机器翻译任务

sacrebleu==1.5.1,本notebook需要指定sacrebleu的版本,详见[github issue](SacreBLEU update · Issue #2737 · huggingface/datasets (github.com))

本次任务使用

数据集,

加载数据

from datasets import load_dataset, load_metric

raw_datasets = load_dataset("wmt16", "ro-en")
metric = load_metric("sacrebleu")

数据长这样

{'translation': {'en': 'Membership of Parliament: see Minutes', 'ro': 'Componenţa Parlamentului: a se vedea procesul-verbal'}}

可以看到一句en对应一句romanian

依然使用metric.compute(predictions=fake_preds, references=fake_labels)api计算得分。

预处理

  1. tokenizer对数据进行tokenize

  2. 将得到的tokens转化为模型需要对应的token id

  3. 再转化为模型需要的格式

以我们使用的mBART模型为例,我们需要正确设置source语言和target语言。如果您要翻译的是其他双语语料,请查看这里。我们可以检查source和target语言的设置:

注意:为了给模型准备好翻译的targets,我们使用as_target_tokenizer来控制targets所对应的特殊token:

如果您使用的是T5预训练模型的checkpoints,需要对特殊的前缀进行检查。T5使用特殊的前缀来告诉模型具体要做的任务,具体前缀例子如下:

现在我们可以把所有内容放在一起组成我们的预处理函数了。我们对样本进行预处理的时候,我们还会truncation=True这个参数来确保我们超长的句子被截断。默认情况下,对与比较短的句子我们会自动padding。

组合起来:

以上的预处理函数可以处理一个样本,也可以处理多个样本exapmles。如果是处理多个样本,则返回的是多个样本被预处理之后的结果list。

使用map函数对所有样本进行预处理。

微调transformer模型

既然数据已经准备好了,现在我们需要下载并加载我们的预训练模型,然后微调预训练模型。既然我们是做seq2seq任务,那么我们需要一个能解决这个任务的模型类。我们使用AutoModelForSeq2SeqLM这个类。和tokenizer相似,from_pretrained方法同样可以帮助我们下载并加载模型,同时也会对模型进行缓存,就不会重复下载模型啦。

由于我们微调的任务是机器翻译,而我们加载的是预训练的seq2seq模型,所以不会像上个问答任务里加载模型的时候扔掉了一些不匹配的神经网络参数。

  1. 为了能够得到一个Seq2SeqTrainer训练工具,我们还需要3个要素,其中最重要的是训练的设定/参数Seq2SeqTrainingArguments。这个训练设定包含了能够定义训练过程的所有属性:

  1. 最后我们需要一个数据收集器data collator,将我们处理好的输入喂给模型。

  1. 设置好Seq2SeqTrainer还剩最后一件事情,那就是我们需要定义好评估方法。我们使用metric来完成评估。将模型预测送入评估之前,我们也会做一些数据后处理:

最后将所有的参数/数据/模型传给Seq2SeqTrainer即可

调用train方法进行微调训练。

Last updated

Was this helpful?